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 a b s t r a c t

The stability of nonlinear model predictive control (MPC) relies significantly on stabilizing factors such 
as the terminal region and cost. A larger terminal region not only expands the region of attraction 
for the closed-loop system but also contributes to reducing online computation costs. However, 
existing methods in the literature often impose limitations on the degrees of freedom available for 
characterizing terminal ingredients. This limitation arises from the reliance on either a predetermined 
linear local controller or a preset control Lyapunov function. This paper introduces an innovative 
approach to terminal ingredient characterization leveraging value-based reinforcement learning (RL). 
This method provides ample degrees of freedom for expanding the terminal region. To achieve this, 
a deep neural network is employed to learn the parametric state value function, serving as the 
terminal cost for MPC. The local controller adopts a one-step MPC instead of a predetermined linear or 
nonlinear feedback controller. Subsequently, a terminal set sequence is constructed iteratively through 
the one-step set expansion. The proposed approach’s effectiveness is validated through simulations.

© 2025 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and 
similar technologies.
1. Introduction

Model predictive control (MPC) has garnered considerable 
success as an advanced optimal control technique, enabling the 
systematic handling of multi-variable systems and operating con-
straints. This success has led to its widespread adoption in various 
industrial applications (Qin & Badgwell, 2003). Generally, MPC 
ensures stability via approximating the infinite horizon optimal 
control which aims to optimize an infinite horizon objective 
function while considering system dynamics. The MPC transfers 
the infinite horizon optimization problem to a finite horizon 
optimization problem with additional stability conditions.

Significant progress has been made in establishing the stability 
of nonlinear model predictive control (NMPC) (Mayne, Rawl-
ings, Rao, & Scokaert, 2000). In the field of NMPC, a pivotal 
stability result is the quasi-infinite horizon approach with the 
terminal region and terminal cost serving as crucial stabilizing 
elements (Chen & Allgöwer, 1998). The objective is to guide the 
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system trajectory into a terminal region around the origin within 
a finite number of steps. Subsequently, a stable local controller 
steers the system trajectory towards the origin. The terminal cost 
constrains the infinite horizon cost of the system, starting from 
the terminal region. In Chen and Allgöwer (1998), an explicit 
approach for characterizing terminal region and terminal cost is 
provided which are computed based on the linearization of the 
nonlinear dynamics around an equilibrium point. A linear state 
feedback controller is then used to compute a quadratic terminal 
cost, with the terminal region as a sub-level set of this cost. 
An outstanding concern for stable NMPC is how to expand the 
terminal region, as the size of the terminal region directly impacts 
both the region of attraction and the online computation costs.

Several research findings have proposed methodologies for en-
hancing the terminal region by increasing degrees of freedom in 
the characterization of terminal ingredients. More tuning param-
eters can be provided to shape the terminal region by integrating 
tuning matrices (Rajhans, Patwardhan, & Pillai, 2017). Besides, a 
support vector machine (SVM) is employed to characterize the 
terminal region, resulting in a significant enlargement (Ong, Sui, 
& Gilbert, 2006). However, these approaches assumed a stable 
linear state feedback controller for nonlinear dynamics, limiting 
the terminal region size in nonlinear cases. Highlighting the sig-
nificance of employing a nonlinear controller for terminal region 
characterization, it emphasized that the terminal region’s size can 
data mining, AI training, and similar technologies.
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be notably increased in Lucia, Rumschinski, Krener, and Findeisen 
(2015). The early method in Yu, Chen, Böhm, and Allgöwer (2009) 
utilized a polytopic linear differential inclusions description to 
capture nonlinear dynamics, yielding a parameter-dependent lo-
cal control law that provides more freedom in choosing termi-
nal ingredients compared to time-invariant linear state feedback 
control laws. Recently, Lazar and Tetteroo (2018) proposed a 
terminal region characterization approach using both linear and 
nonlinear controllers for terminal region characterization. They 
suggested using a second-order Taylor series approximation of 
system dynamics to enlarge the terminal region.

In the previous literature, the stable local control is prede-
fined, and the corresponding terminal region is calculated. Thus, 
there is no guarantee that the consequent terminal region is 
the maximal one in different control laws. Yafeng Wang et al. 
introduced a novel approach that progressively approximates the 
maximal terminal state region without a predefined feedback 
controller (Wang, Sun, Liu, & Yang, 2012). The shortcoming is that 
a predefined terminal cost is required, also imposing limitations 
on terminal region enlargement. Therefore, this paper aims to 
enlarge the terminal region without a predetermined feedback 
controller or terminal cost.

Reinforcement learning (RL) is designed to iteratively derive 
the optimal control policy for infinite-horizon objective functions 
through the Bellman equation. Currently, a prevalent approach 
for integrating RL with MPC involves modifying the MPC termi-
nal cost to enhance closed-loop performance and approximate 
infinite-horizon optimality. Moreno et al. utilized a value-based 
learning method to obtain the terminal cost (Moreno-Mora, Beck-
enbach, & Streif, 2023). Similarly, Min Lin et al. also employed the 
learned value function as the terminal cost in MPC, treating MPC 
as a policy generator whose performance is evaluated through RL 
techniques (Lin, Sun, Xia, & Zhang, 2023). Both studies ensure 
closed-loop stability by selecting a sufficiently long prediction 
horizon to steer the terminal state into a predefined terminal 
region rather than enforcing explicit terminal constraints. How-
ever, this would require a larger prediction horizon to guarantee 
the asymptotic stability of the closed loop, which will result in a 
greater online computing burden.

To the best of the authors’ knowledge, no existing literature 
explicitly employs RL techniques to directly construct the termi-
nal ingredients for enlarging the terminal region without reliance 
on predetermined elements. In this study, RL is integrated into an 
MPC framework to iteratively reshape the terminal cost within a 
constructed terminal set sequence, thus eliminating the need for 
any predetermined feedback controller or terminal cost. The key 
contributions of this work are summarized as:

(1) A promising approach to characterizing terminal ingre-
dients for the MPC optimization problem is introduced 
using a value-based RL technique. The deep neural network 
(DNN) is harnessed to learn the parametric state value 
function, serving as the terminal cost for stable MPC. The 
local controller adopts a one-step MPC instead of a prede-
fined linear or nonlinear feedback controller. Subsequently, 
a terminal set sequence is iteratively constructed based on 
this terminal cost through the one-step set expansion.

(2) In this RL learning process, this work introduces a novel 
method for learning and exploration. Information from 
both model knowledge and MPC computations is leveraged 
to calculate target values, enhancing the overall learning 
efficiency. Besides, the actor used for exploration is ex-
plicitly chosen as a one-step MPC controller instead of a 
randomly selected policy, which may avoid the need for 
an exhaustive action space search.

(3) Comprehensive convergence and stability analyses are pro-
vided theoretically, and the proposed approach demon-
strates its effectiveness through simulation studies.
2

2. Preliminaries

2.1. System description

In this work, we consider the following discrete-time, time-
invariant nonlinear system 
xk+1 = f (xk, uk),∀k ∈ N0, (1)

with state x ∈ X ⊆ Rnx  and control u ∈ U ⊆ Rnu  for some 
nx, nu ∈ N, whose dynamic f : Rnx ×Rnx → Rnx  is assumed to be 
Lipschitz continuous in both arguments, with f (0, 0) = 0. U is a 
compact set, X is a closed and bounded set, satisfying 0 ∈ U and 
0 ∈ X.

2.2. Model predictive control

The finite horizon optimal control problem of MPC to be solved 
online for system (1) at each time k ∈ N0 may read as 

V ∗N (xk) := min
ui

N−1∑
i=0

γ il(xi, ui)+ γ NVf (xN ) (2a)

s.t. x0 = xk (2b)

xi+1 = f (xi, ui), i ∈ IN−10 (2c)

ui ∈ U, i ∈ IN−10 (2d)

xi ∈ X, i ∈ IN1 (2e)

xN ∈ Xf (2f)

i = 0, . . . ,N − 1 (2g)

where N is the prediction horizon, and 0 < γ < 1 is the discount 
factor. The stage cost function l(x, u) is positive-definite, like the 
set-point tracking function. The set Xf  is the terminal region and 
Vf  is the terminal cost. Compared to the infinite-horizon optimal 
control, the solution space of the MPC optimization problem is 
changed to be finite dimensional vector space and can be solved 
by using a numerical optimization solver such as the interior 
point method. Define the optimal solution of MPC optimization 
problem (2) as u∗N (xk) = {u∗0(xk), u∗1(xk), . . . , u∗N−1(xk)}, the corre-
sponding state trajectory as x∗N (xk) = {x0, x∗1(xk), . . . , x∗N−1(xk), x∗N
(xk)}. Let V ∗N (xk) be the minimum of (2). According to the receding 
horizon mechanism, the control law of MPC can be denoted as 
uRH (xk) = u∗0(xk), k = 0, 1, 2, . . . . (3)

The stability of this controller will be taken into consideration 
since optimality does not imply stability. The terminal cost Vf (·)
and terminal region Xf  should be pre-designed which are as-
sociated with the local feedback law u = κf (x). The terminal 
ingredients should consider the following assumptions (Mayne 
et al., 2000). 

Assumption 2.1.  (1) Let the set Xf  satisfy 0 ∈ Xf ⊆ X. (2) For 
all x ∈ Xf , κf (x) ∈ U. (3) The set Xf  is positively invariant under 
κf (x), i.e., for all x ∈ Xf , there is f (x, κf (x)) ∈ Xf . (4) The value 
function Vf (·) with Vf (0) = 0 is continuous and positive definite, 
and there has γVf (f (x, κf (x)))− Vf (x) ≤ −l(x, κf (x)),∀x ∈ Xf .

The closed-loop stability of the controlled system is shown in the 
following Lemma. 

Lemma 2.1.  For any x0 ∈ X, if (2) has a feasible solution under 
Assumption  2.1, it is guaranteed that x0 will be steered to the origin 
by using the control law of MPC.
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In satisfying these conditions in Assumption  2.1, there is much 
freedom in the choice of κf (·), Xf  and Vf (·). It is common to choose 
κ(x) = kx with a fixed k and Vf = xTPx to be a Lyapunov function 
related to the linear model of (1) at the origin. Xf  is chosen to be 
the level set XP = {x : xTPx ≤ α}, and α is chosen small so that 
Vf  remains a Lyapunov function in region XP .

Remark 2.1.  In the proposed MPC framework (2), the discount 
factor γ  is introduced to ensure that the value iteration update 
operator, defined subsequently in Section 3, satisfies the con-
traction mapping condition (Szepesvári, 2010). This contraction 
property is essential to guarantee the convergence of the approxi-
mate value iteration process toward the optimal value function. It 
is worth noting that standard MPC formulations without a value 
iteration step typically do not require a discount factor.

2.3. Reinforcement learning

RL is the direct adaptive optimal control aiming to approxi-
mate the optimal value function or optimal policy based on the 
following Bellman equation 

V ∗(xk) = min
κ(·)
{l(xk, κ(xk))+ γV ∗(xk+1)}, (4)

u∗k = κ∗(xk) = argmin
κ(·)
{l(xk, κ(xk))+ γV ∗(xk+1)}, (5)

for all xk ∈ X. The optimal value function V ∗(x) is a Lyapunov 
function for the system (1) with u∗k as the corresponding optimal 
policy. The value-based RL is essentially value iteration which 
means learning the optimal value function by recursively apply-
ing Eq. (4), and the value function is typically approximated by a 
DNN.

2.4. Problem formulation

For stable MPC as described in (2), it is essential to carefully 
design the terminal controller κf (·), terminal region Xf , and ter-
minal cost Vf (·), as a larger terminal region directly leads to an 
expanded region of attraction for the closed-loop system. Con-
sequently, developing methods that provide sufficient degrees of 
freedom for constructing the terminal cost and terminal region 
within MPC becomes particularly important. Moreover, Assump-
tion  2.1 must be satisfied by the terminal ingredients to guarantee 
closed-loop stability. Value-based reinforcement learning inher-
ently yields an approximation of the optimal value function, facil-
itating effective characterization of the terminal region. Utilizing 
parameterized value functions further enhances the degrees of 
freedom available for designing these terminal ingredients.

In this work, a novel approach for designing the terminal 
cost and terminal region in the MPC optimization problem (2) is 
proposed by leveraging value-based RL. Firstly, the characteriza-
tion of the terminal region is established, wherein a sequence of 
terminal subsets is iteratively constructed through one-step set 
expansions. The resulting set sequence provides an approxima-
tion of the maximal terminal region. Secondly, the optimal value 
function Vf (x), which serves as the terminal cost, is learned within 
each subset using value-based RL. An update operator is designed 
to iteratively steer an arbitrarily initialized value function to the 
optimal one. Subsequently, a learning framework employing a 
double-network setting is presented. Finally, a rigorous stability 
analysis of the proposed approach is provided.
3

3. Proposed approach

3.1. Characterization of terminal region

To guarantee stability, the design of the terminal region Xf  and 
terminal cost Vf (x) should satisfy Assumption  2.1. Moreover, to 
enlarge the terminal region, the one-step MPC is chosen as the 
local controller, for ∀x ∈ Xf . The local control law is the solution 
of the following optimization problem, 
Q ∗f (x) = min

u∈U
Qf (x, u) = l(x, u)+ γVf (f (x, u)) (6a)

s.t. f (x, u) ∈ Xf (6b)

Define the optimal local action as π (x) = u∗ where u∗ is the 
solution of the optimization problem (6). Then, the terminal 
region Xf  can be expressed as 

Xf := {x ∈ X|Vf (x) ≥ Q ∗f (x)} (7)

It can be seen from the expression of Xf  that the terminal region 
is essentially a positively invariant set using the optimal control 
resulting from the optimization problem (6) with terminal cost 
Vf (·). However, from this expression, it cannot be determined 
whether a state point belongs to Xf  since the Xf  acts as the con-
straint in the optimization problem (6). To solve this problem, the 
method of using a one-step set expansion iteratively is adopted. 
The iterative process begins with an initial positively invariant set 
estimation X0

f . With this initial estimation X0
f , the corresponding 

V 0
f  is the optimal value function that can be obtained using the 

value-based RL, and it will be elaborated later on.
Based on this X0

f  and corresponding V 0
f , a more accurate esti-

mation of X1
f  is achieved expressed as 

X1
f := {x ∈ X|V 0

f (x) ≥ Q 0∗
f (x)} (8)

where Q 0∗
f (x) is the minimum of 

Q 0∗
f (x) := min

u∈U
Q 0
f (x, u) = l(x, u)+ γV 0

f (f (x, u)) (9a)

s.t. f (x, u) ∈ X0
f (9b)

As shown, the construction of X1
f  means there exists u ∈ U

satisfying f (x, u) ∈ X0
f  for any x ∈ X1

f . Besides, the minimum 
of optimization (9) satisfies Q 0∗

f (x) ≤ V 0
f (x). With this terminal 

region X1
f , the corresponding optimal value function V 1

f  can also 
be obtained using the value-based RL technique. Repeatedly, a 
more accurate estimation X2

f  can be constructed using the in-
formation of X1

f  and V 1
f . Written in iterative form, the terminal 

region X j
f , j = 2, 3, . . . ,∞ can be constructed as 

X j
f := {x ∈ X|V j−1

f (x) ≥ Q j−1∗
f } (10)

where Q j−1∗
f  is the minimum of 

Q j−1∗
f (x) : = min

u∈U
Q j−1
f (x, u)

= l(x, u)+ γV j−1
f (f (x, u))

(11a)

s.t. f (x, u) ∈ X j−1
f (11b)

As shown in Fig.  1, by employing this one-step set expansion 
for constructing X j

f , a subsets sequence of the terminal region, 
denoted by {X j

f , j = 0, 1, 2, . . . ,∞}, can be achieved. The corre-
sponding optimal value function V j

f  can also be acquired within 
each subset.
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Fig. 1. A simplified schematic for the construction of terminal ingredients.

3.2. Characterization of terminal cost

During the iterations of the terminal subsets sequence, the 
corresponding optimal value function V j

f (x) is gained by value-
based RL. Value iteration is to learn the optimal value function by 
recursively applying the Bellman optimality equation. In a value 
iteration step, an update operator should be constructed to steer 
an arbitrarily initialized value function to the optimal one. The 
iteration j will be omitted in the subsequent content for the sake 
of brevity. In this learning framework, for ∀xk ∈ Xf , the one-step 
MPC is integrated into the construction of the update operator 
used for value iteration. The operator for all xk ∈ Xf  based on this 
one-step MPC is defined 

Vf ,i+1(xk) = T vVf ,i(xk)
= l(xk, π (xk))+ γQf ,i(xk+1, π (xk+1))

(12)

where T v is the update operator and i is the update step. The 
term Qf ,i(xk+1, π (xk+1)) is obtained from the optimization (6) 
with value function Vf ,i at xk+1.

To demonstrate the convergence of this update operator (12), 
i.e., it can steer an initial value function to the optimal value 
function, the operator (12) should be explained as a contraction 
mapping first, and the optimal value function is the unique fixed 
point (Szepesvári, 2010). 

Assumption 3.1.  For all xk ∈ Xf , the initialized value function 
Vf ,0 satisfies 

Vf ,0(xk) ≥ min
uk∈U,xk+1∈Xf

{l(xk, uk)+ γVf ,0(xk+1)} (13)

Lemma 3.1.  Suppose Assumption  3.1 holds, the operator T v defined 
in (12) is a contraction mapping, and the optimal value function is 
the unique fixed point of this operator. Then, the proposed update 
defined in (12) can steer the value function Vf ,i(x) to the optimal 
one Vf (x) for all xk ∈ Xf  with the following inequality satisfied. 

Vf (xk) ≥ min
uk∈U,xk+1∈Xf

{l(xk, uk)+ γVf (xk+1)} (14)

Proof. First, define two other operators T  and T ′ for all xk ∈ Xf , 

TVf ,i (xk) = min
uk∈U,xk+1∈Xf

{
l (xk, uk)+ γVf ,i (xk+1)

}
(15)

T ′Vf ,i(xk) = min
uk,uk+1∈U,

xk+1,xk+2∈Xf

{l(xk, uk)

2
(16)
+ γ l(xk+1, uk+1)+ γ Vf ,i(xk+2)}
4

When Assumption  3.1 holds for Vf ,i(xk), the following equations 
hold for xk ∈ Xf , 
TVf ,i(xk) = min

uk∈U
{l(xk, uk)+ γ min

xk+1∈Xf
Vf ,i(xk+1)}

≥ min
uk∈U
{l(xk, uk)+

min
uk+1∈U,

xk+1,xk+2∈Xf

{γ l(xk+1, uk+1)+ γ 2Vf ,i(xk+2)}}

= min
uk∈U,

xk+1∈Xf

{l(xk, uk)+ γ TVf ,i(xk+1)}.

(17)

Similarly, for operator T ′, we have 
T ′Vf ,i(xk) ≥ min

uk∈U,

xk+1∈Xf

{l(xk, uk)+ γ T ′Vf ,i(xk+1)}. (18)

Since πi(xk) := argminuk Qf ,i(xk, uk), expand TVf ,i(xk), 

TVf ,i(xk) = l(xk, πi(xk))+ γ min
xk+1∈Xf

Vf ,i(xk+1)

≥ l(xk, πi(xk))

+ min
uk+1∈U,xk+1,

xk+2∈Xf

{γ l(xk+1, uk+1)+ γ 2Vf ,i(xk+2)}

= T vVf ,i(xk)

(19)

for xk ∈ Xf . Expanding T vVf ,i(xk), we have 
T vVf ,i(xk) = l(xk, πi(xk))+

min
uk+1∈U,

xk+1,xk+2∈Xf

{γ l(xk+1, uk+1)+ γ 2Vf ,i(xk+2)}

≥ min
uk,uk+1∈U,

xk+1,xk+2∈Xf

{l(xk, uk)+ γ l(xk+1, uk+1)+ γ 2Vf ,i(xk+2)}

= T ′Vf ,i(xk)

(20)

for xk ∈ Xf . Based on (19) and (20), 

TVf ,i(xk) ≥ T vVf ,i(xk) ≥ T ′Vf ,i(xk) (21)

From Szepesvári (2010), we know that operators T  and T ′ are 
two contraction mappings, and the fixed point is optimal value 
function Vf (x). Then, the Vf (x) is also a fixed point for operator T v

based on (21). To prove uniqueness, we need to prove that for all 
fixed points V v

f (x) of mapping T v , they are the same as Vf (x). For 
every V v

f (x) satisfying T vV v
f (xk) = V v

f (xk), we have 

T vV v
f (xk) = l(xk, uk)+ γ T vV v

f (xk+1)
≥ min

uk∈U,xk+1∈Xf
{l(xk, uk)+ γ T vV v

f (xk+1)}.
(22)

for all xk ∈ Xf . Then, we get V v
f (xk) ≥ TV v

f (xk), combined with 
(21), 
TV v

f = V v
f (23)

So every fixed point of T v , i.e., V v
f (x), is also the unique fixed point 

of operator T , i.e., Vf (x). In summary, the Vf (x) is the unique fixed 
point of operator T v . □

Based on the operator T v defined in (12), the optimal value 
function Vf (x) can be achieved. However, this operation is per-
formed for all states in the region Xf . In other words, an infinite-
dimensional vector will be operated using T v to reach the optimal 
value function Vf (x). Value-based RL is an executable route that 
parameterizes the value function by DNN, trained to learn the op-
timal value function Vf (x). Deep-Q-network (DQN), as an effective 
value-based RL method, tends to learn the action-value function 
with discrete action settings by enumerating a finite number of 
all possible candidate actions. To prevent the selection of the 
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Fig. 2. The learning framework of GDDVN.

overestimated value, DQN uses two DNNs to learn the action-
value functions, called target network with parameter θt and 
main network with parameter θm. The target network is utilized 
to evaluate the target values, while the main network is used to 
generate the actions for exploration.

To handle continuous state space and obtain the expression of 
the optimal value function, we propose a generalized algorithm 
of value-based RL by using one-step MPC as an actor. Besides, the 
operator T v is employed for the evaluation of the target value 
which integrates the model and the minimum value of one-step 
MPC into the RL framework.

3.3. Generalized value-based RL for obtaining the optimal value 
function

The parameterized terminal cost Vfθ (·) is employed to learn 
Vf (·) via DNNs, and a generalized value-based RL will be intro-
duced in this section. The learning procedure is similar to that of 
DQN, the difference is that the action used for exploration is from 
the actor obtained by the optimization problem (6) rather than an 
arbitrary one. Besides, another difference is that the calculation 
of the target value used for updating the parameter θ is based on 
the minimum of the optimization problem (6). Double network 
settings are applied to this generalized value-based RL, named 
generalized double deep-V-network (GDDVN). Double network 
for value functions are denoted as main network Vfθm  and target 
network Vfθt . For arbitrary x ∈ Xf , one-step MPC is regarded as 
an actor for exploration to generate data, and the optimization 
problem read as, 
min
uk∈U

Qfθm (xk, uk) = l(xk, uk)+ γVfθm (f (xk, uk)) (24a)

s.t. f (xk, uk) ∈ Xf (24b)

Similar to DQN, the actor of GDDVN is represented as an opti-
mization problem. The difference is that one-step MPC is con-
structed with the model predicting the state transition. The use 
of the model helps to stably compute the input and dramatically 
reduces the required amount of data to improve the control 
policy. Besides, the state constraints can be explicitly imposed to 
obtain the current action. The learning framework of GDDVN is 
shown in Fig.  2.

Another difference is performing the optimization of the target 
network to obtain the target value whereas the DQN obtains the 
optimal solution by enumeration. For collecting data, ∀x ∈ Xf , 
after πθm (x), i.e., the solution of the optimization (24), is taken, 
we get the reward rk = l(x, πθm (x)) and the next state x+ =
f (x, πθm (x)). The GDDVN evaluates the target value yk based on 
the T v operator, shown as 
y = r + γQ (x , π (x )) (25)
k k θt k+1 θt k+1

5

where Qθt (xk+1, πθt (xk+1)) is the minimum of optimization prob-
lem (24) with terminal cost Vfθt . Let B be the batch data set. Then, 
the update of the main network is performed by applying the 
one-step gradient descent step with the appropriate step size α, 

θ+m = θm + α∇θm

1
|B|

∑
B

[Vfθm (xk)− yk]2 (26)

The parameter of the target network is updated by 
θ+t = (1− ρ)θt + ρθm (27)

where ρ ∈ [0, 1] is the update coefficient.
The algorithm framework of this proposed approach is sum-

marized in Algorithm 1.

Algorithm 1 Terminal ingredients designed based on GDDVN
Input: Initialization:X0

f ⊆ X is a positively invariant set 
containing the origin, j← 0

1: repeat
2:  Initialization:V j

fθm
, V j

fθt
3:  for Each episode n do
4:  Generate the initial state in region X j

f
5:  for Each time step k do
6:  Compute the action uk = πθm (xk) by solving (24)
7:  Observe the next state xk+1 and reward rk = l(xk, uk)
8:  Add the data tuple (xk, uk, rk, xk+1) into the replay 

buffer
9:  end for

10:  end for
11:  if n reaches the training period then
12:  Select the batch data set B from the replay buffer
13:  Calculate the target value by equation (25) for data 

tuple in B
14:  Update the main network by (26)
15:  end if
16:  Return the trained V j

fθm
17:  if n reaches the updating period then
18:  Update the target network by (27)
19:  end if
20:  Return the trained V j

fθt

21:  Define X j+1
f  using trained V j

f  by equation (10)
22:  Obtain the explicit expression of the region X j+1

f  using SVM
23:  j← j+ 1
24: until X j

f → Xf ,max
Output: Xf , Vf

4. Stability analysis

The terminal ingredients are obtained via two iterative pro-
cesses. After choosing the one-step MPC as the local controller, 
the terminal region Xf  is constructed by a subsets sequence 
defined in (10), while the terminal cost and corresponding local 
controller can be learned via value-based RL using the contraction 
operator (12). Here, we want to show the effectiveness of these 
proposed terminal ingredients with an enlarged terminal region.

Lemma 4.1.  If Assumption  3.1 is satisfied, and X0
f  is a positively 

invariant set, there is X1
f  such that X0

f ⊂ X1
f , and X1

f  is a positively 
invariant set.

Proof. If Assumption  3.1 is satisfied, it follows that V 0
f (x) ≥

Q 0∗
f (x). From the construction of X1

f , we have x ∈ X1
f , namely, 

X0
⊂ X1. □
f f
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In our approach, the one-step MPC is chosen, and its cor-
responding maximal terminal region Xf ,max can be defined as 
follows. 

Definition 4.1.  For the terminal region Xf , the following two 
conditions are satisfied: (1) For any x ∈ Xf , there exists the 
inequality satisfied. 
Vf (x) ≥ min

u∈U
{l(x, u)+ γVf (f (x, u))}. (28)

where Vf  is the terminal cost. (2) The set Xf ⊆ X is a control 
invariant set under one-step MPC with terminal cost Vf (x). Then, 
the largest terminal region that satisfies the above two conditions 
is defined as the maximal terminal region Xf ,max.

Assumption 4.1.  There exists a set X+∞f  to which the subsets 
sequence {X j

f , j = 1, 2, . . . ,+∞}, constructed according to (10) 
and (11), will converge as j→+∞.

Theorem 1.  If Assumptions  3.1 and 4.1 are satisfied, then for 
X j
f  with initialized X0

f ⊂ X being a positively invariant set and 
containing the origin,

(1) the subsets sequence {X j
f , j = 1, 2, . . . ,+∞} will converge 

to Xf ,max when j goes to infinity.
(2) there exists optimal terminal cost V j

f  obtained by operator 
(12). Then the equilibrium x = 0 is asymptotically stable with X j

f

and V j
f  serving as the terminal ingredients for MPC (2).

Proof.  (1) Similar to Lemma  4.1, any subset in the sequence 
is positively invariant and any two neighboring subsets satisfy 
X j−1
f ⊂ X j

f  in terms of the construction of X j
f  and Lemma  3.1. 

Subsequently, we will prove by contradiction, based on Assump-
tion  4.1, that the region X+∞f  is equivalent to the largest terminal 
region Xf ,max.

When Xf ,max ⊂ X+∞f , for ∀x ∈ X+∞f , there exists corresponding 
terminal cost V+∞f  satisfying V+∞f (x) ≥ minu∈U,f (x,u)∈X+∞f

{l(x, u)+
γV+∞f (f (x, u))} according to Lemma  3.1. This is contradicted with 
that Xf ,max is the largest terminal region under Definition  4.1.

When X+∞f ⊂ Xf ,max, for ∀x ∈ Xf ,max\X+∞f , there exists no 
such a u ∈ U satisfying V+∞f (x) ≥ minu∈U,f (x,u)∈X+∞f

{l(x, u) +
γV+∞f (f (x, u))}. However, from Definition  4.1, for ∀x ∈ Xf ,max, 
there exists f (x, u) ∈ Xf ,max\X+∞f  and the inequality satisfied (28). 
Besides, it is obvious that 0 /∈ Xf ,max\X+∞f  which is contradicted 
with that Vf (x) is regarded as the local Lyapunov function.
(2) From the construction of X j

f , Assumption  2.1 is satisfied with 
X j
f  and V

j
f  serving as the terminal ingredients for MPC. Then, 

the equilibrium x = 0 is asymptotically stable with this MPC 
strategy. □

Remark 4.1.  If the number of iteration steps is finite, the 
resulting terminal set may only approximate a large positively 
invariant subset within Xf ,max. Although this approximation does 
not compromise the stability of the controlled system, it does 
result in a smaller region of attraction compared to the one 
associated with Xf ,max. Consequently, selecting the number of 
terminal set expansion iterations inherently involves a trade-off 
between offline computational complexity and the size of the 
achievable region of attraction.

Remark 4.2.  The terminal region can be constructed through 
the implicit expression (10). However, it cannot serve as the 
terminal constraint in the optimization problem (11) directly. One 
6

approach to the characterization of this terminal region explicitly 
is needed. In this work, SVM learning is exploited to obtain the 
explicit expression of each terminal region, and a conservative 
approximation method is leveraged from Ong et al. (2006). It 
takes the form of a scalar function, Oj(x) such that X̃ j

f := {x ∈
X|Oj(x) ≥ 0} closely approximates X j

f . For every x ∈ X j
f  (x ∈ X\X j

f ), 
an additional label variable ys = +1(ys = −1) is applied. This 
SVM is allowed to classify safe points (the points belong to X j

f ) as 
unsafe (the points do not belong to X j

f ) but not the other way. 
Finally, the formulation of SVM finds a separating hyperplane, 
expressed as Oj(x) = wjφ(x)+ bj = 0, between X j

f  and X\X
j
f .

Remark 4.3.  The proposed approach inherently exhibits fa-
vorable scalability properties to higher-dimensional systems, pri-
marily because the exploration process leverages a structured 
one-step MPC approach rather than random exploration, thus 
effectively mitigating computational complexity. Moreover, al-
though SVM-based terminal region approximations face chal-
lenges due to dimensionality, the conservative nature of our 
approximations ensures the safety and stability of the resulting 
terminal regions.

5. Simulation results and discussion

Consider a system described by the following ODEs (Chen & 
Allgöwer, 1998): 
ẋ1 = x2 + u(µ+ (1− µ)x1) (29a)

ẋ2 = x1 + u(µ− 4(1− µ)x2) (29b)

where u and x have to satisfy the following constraints: 
U = {u ∈ R1

| − 2 ≤ u ≤ 2} (30)

X = {x ∈ R2
|[−4 − 4]T ≤ x ≤ [4 4]T } (31)

Assume µ = 0.5 for the moment. To guarantee the stability of 
MPC, terminal cost, terminal region, and local controller need to 
be designed. In Chen and Allgöwer (1998), the quadratic termi-
nal function and the corresponding terminal region Ωα can be 
obtained based on a linear locally stabilizing state feedback con-
troller. The optimal control problem of MPC is solved in discrete 
time with a sampling time of δ = 0.1 and a prediction horizon of 
Tp = 1.5.

Here, we are about to redesign the terminal ingredients using 
RL. In this case, we employ the terminal region Ωα from Chen 
and Allgöwer (1998) as an initial terminal region in this proposed 
approach. Value-network is incorporated into the MPC frame-
work to shape the terminal cost which is regarded as the optimal 
cost. The learning rate for RL is η = 0.0002, and the discount 
factor is γ = 0.9. The conventional dense neural networks 
of the value-network have three layers where the number of 
nodes for each layer are 8, 4, and 1, respectively. We selected 
the number of nodes by trial and error, considering the trade-off 
between approximation ability and learning speed. The learning 
of the main network is performed every five time steps, and 
the update of the target network is performed after five times 
of updating the main network. The update coefficient is set as 
ρ = 0.9. Since the optimization problem of MPC is solved with 
a gradient-based numerical optimization solver, it is preferable 
to use a smooth neural network. In addition, a non-negative 
property is also preferred for the terminal cost. Therefore, we 
propose to use the following function as an activation function 
of the value-network (Oh, Park, Kim, & Lee, 2022), 
A(x) = log(1+ xT x), (32)
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Fig. 3. The terminal region sequence.

Table 1
Comparison of the shortest possible prediction horizon (N) and the closed-loop 
performance (J) of the proposed method and paper (Chen & Allgöwer, 1998). 
None indicates that there is no feasible solution.
 x0 Paper (Chen & Allgöwer, 1998). This paper.
 
(−4, 2) N = 14 N = 15 N = 16 N = 1 N = 2 N = 5 

 None 93.13 85.48 98.62 80.66 65.48  
 
(−4, 4) N = 17 N = 18 N = 20 N = 1 N = 2 N = 5 

 None 72.83 72.31 84.7 81.38 71.8  
 
(0.15,−4) N = 6 N = 7 N = 8 N = 2 N = 3 N = 5 

 None 34.54 34.5 33.62 31.56 31.52  
 
(3.7,−0.5) N = 11 N = 12 N = 13 N = 1 N = 2 N = 5 

 None 56.9 51.06 52.12 51.6 47.9  

Based on this trained terminal cost, we can construct the terminal 
region through implicit expression (10). To execute the one-step 
set expansion iteratively, the characterization of this terminal 
region explicitly is achieved through SVM learning with the Gaus-
sian kernel as the kernel function (Ong et al., 2006). To estimate 
each X j

f , 5625 training points are generated in state admissible 
region X. As observed from the simulation results, when j is 
iterated to 18, the terminal regions of adjacent iteration steps are 
nearly the same. The iterative process can be well illustrated in 
Fig.  3, and it stems from the initial set Ωα . It can be seen that the 
terminal region designed via the proposed strategy in this work 
has been enlarged more than that in paper (Chen & Allgöwer, 
1998; Ong et al., 2006).

Fig.  4 and Table  1 depict the closed-loop state trajectory of 
some initial points, which are selected to implement the compar-
ison between the proposed approach and the approach in Chen 
and Allgöwer (1998). The closed-loop performance can be evalu-
ated with the following index 

J =
Nsim∑
k=1

l(xk, uk), (33)

where Nsim is the simulation step. The smaller this value is, 
the better the closed-loop performance is. The closed-loop per-
formance with these two approaches under different prediction 
horizons is revealed in Table  1, which shows that our proposed 
method has improved performance compared to Chen and All-
göwer (1998) in two important aspects:

(1) The proposed method can find a feasible solution with a 
smaller prediction horizon for the same initial state. As 
shown in Table  1, taking the initial point (−4,2) as an ex-
ample, the traditional NMPC in Chen and Allgöwer (1998) 
has a feasible solution only when N is over 14, while the 
proposed NMPC has a feasible solution when N = 1. This 
7

Fig. 4. Comparison of the terminal regions and closed-loop trajectories. Terminal 
regions: non-ellipse for this proposed approach, ellipse for paper (Chen & 
Allgöwer, 1998).

improves the feasibility of solving optimization problems 
for NMPC and reduces the burden of online computing due 
to the small prediction horizon.

(2) According to the closed-loop performance index (33), our 
approach performs better as shown in Table  1. Taking the 
initial point (−4,2) as an example, the control performance 
is already significantly better when N = 5. The closed-loop 
state trajectory in Fig.  4 can also fully support the above 
conclusion.

6. Conclusions

This paper demonstrates the application of value-based RL in 
the design of terminal ingredients for MPC. The proposed con-
struction provides significant degrees of freedom for expanding 
the terminal region, eliminating the need for predetermining 
a feedback controller or a terminal cost. As a result, the re-
gion of attraction under this proposed controller is substantially 
enlarged, and the online computational burden is reduced due 
to a shorter prediction horizon. Simulation results demonstrate 
the effectiveness and computational feasibility of this approach, 
showing improvement in the size of the terminal region and sta-
bility of the closed-loop system. Nevertheless, it remains critical 
to resolve numerical implementation issues to effectively extend 
the proposed approach to practical higher-dimensional systems. 
Future work will focus on enhancing data efficiency in value func-
tion training by adopting adaptive discretization strategies and 
reducing the complexity of explicit terminal region representa-
tions using compact alternatives such as maximal inscribed ellip-
soid approximations, especially important for higher-dimensional 
systems.
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